On the Solutions of a Porous Medium Equation with Exponent Variable

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic solutions of a porous medium equation

In this paper, we study with a periodic porous medium equation with nonlinear convection terms and weakly nonlinear sources under Dirichlet boundary conditions. Based on the theory of Leray-Shauder fixed point theorem, we establish the existence of periodic solutions.

متن کامل

Discrete solutions for the porous medium equation with absorption and variable exponents

In this work, we study the convergence of the finite element method when applied to the following parabolic equation: ut = div(|u|∇u)− λ|u|σ(x,t)−2u+ f(x, t), x ∈ Ω ⊂ R, t ∈]0, T ]. Since the equation may be of degenerate type, we utilise an approximate problem, regularised by introducing a parameter ε. We prove, under certain conditions on γ, σ and f , that the weak solution of the approximate...

متن کامل

Maximal Viscosity Solutions of the Modified Porous Medium Equation

We construct a theory for maximal viscosity solutions of the Cauchy problem for the modiied porous medium equation u t + ju t j = (u m), with 2 (?1; 1) and m > 1. We investigate the existence, uniqueness, nite propagation and optimal regularity of these solutions. As a second main theme we prove that the asymptotic behaviour is given by a certain family of self-similar solutions of the so-calle...

متن کامل

Convergence of the Finite Element Method for the Porous Media Equation with Variable Exponent

Abstract. In this work, we study the convergence of the finite element method when applied to the following parabolic equation: ut = div(|u|γ(x)∇u) + f(x, t), x ∈ Ω ⊂ Rm, t ∈]0, T ]. Since the problem may be of degenerate type, we utilize an approximate problem, regularized by introducing a parameter ε. We prove, under certain conditions on γ and f , that the weak solution of the approximate pr...

متن کامل

Regularity of solutions of the fractional porous medium flow with exponent 1/2

We study the regularity of a porous medium equation with nonlocal diffusion effects given by an inverse fractional Laplacian operator. The precise model is ut = ∇·(u∇(−∆)−1/2u). For definiteness, the problem is posed in {x ∈ RN , t ∈ R} with nonnegative initial data u(x, 0) that are integrable and decay at infinity. Previous papers have established the existence of mass-preserving, nonnegative ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Dynamics in Nature and Society

سال: 2019

ISSN: 1026-0226,1607-887X

DOI: 10.1155/2019/9290582